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Abstract We give new sufficient ergodicity conditions for two-state probabilistic cellular
automata (PCA) of any dimension and any radius. The proof of this result is based on an
extended version of the duality concept. Under these assumptions, in the one dimensional
case, we study some properties of the unique invariant measure and show that it is shift-
mixing. Also, the decay of correlation is studied in detail. In this sense, the extended concept
of duality gives exponential decay of correlation and allows to compute explicitly all the
constants involved.

Keywords Probabilistic cellular automata · Invariant measures · Duality decay of
correlation

1 Introduction

Probabilistic cellular automata (PCA) are discrete time Markov processes which have been
intensely studied since at least Stavskaja and Pjatetskii-Shapiro [12] (1968). This kind of
processes have as state space a product space X = AZ

d
where A is any finite set and d is

any positive integer. We may regard a PCA as an interacting particle system where particles
update its states simultaneously and independently. Recall that a PCA is ergodic if there
exists only one invariant measure μ and starting from any initial measure μ0 the system
converges to μ.

The aim of this paper is to use duality principles to study the ergodicity of two-state PCA.
More precisely our work gives new sufficient ergodicity conditions for the expression of the
PCA’s local transition probabilities (see Theorem 2) and show that under these conditions the
invariant measure is shift-mixing with exponential decay of correlation. Relations between
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the PCA and the dual process (see Lemmas 4 and 2) also allow us to give a very simple
expression of the constant of the decay of correlation as a function of the radius (of the
PCA) and the transition probabilities of the PCA (see Theorem 3). Moreover the proof of
Theorem 2 shows in detail how to compute the value of the invariant measure on cylinders.
Results about the decay of correlation is an answer to a question raised in [9].

The existence of a dual process satisfying the duality equation (see Definition 1 and
Liggett [7]) gives useful information (problems in uncountable sets can be reformulated as
problems in countable sets) about the PCA but is not always sufficient to prove that a PCA
is ergodic. In [9], Lopez, Sanz and Sobottka introduced an extended concept of duality (see
Definition 2) and gave general results about ergodicity (see Theorem 1). They used this
powerful general theory to give results on multi-state one-dimensional PCA of radius one
and extended previous results about the Domany-Kinzel model (see [1] for an introduction
and [5] for extensions). Previously, in [6] Konno has given ergodicity conditions for multi-
state one-dimensional PCA using self-duality equations.

Even if, in some cases, the existence of null transition probabilities allows to prove er-
godicity of a certain class of PCA (see [5] and [6]), it had been conjectured that in the one-
dimensional case positive noise cellular automata are ergodic. However, P. Gacks, in 2000,
introduced a very complex counterexample (see [3] and [4]) for noisy deterministic cellular
automata. In that case, the noisy one-dimensional cellular automata does not forget the past
and starting from different initial distribution, the PCA may converge to different invariant
measures. His result can be extended to noisy PCA with positive rates. This conjecture was
formulated only in the one-dimensional case since in dimension 2 or higher, it is easier to
show the existence of at least two invariant measures. For instance, the two-dimensional
Ising model [4] or the Toom example (see [13]) that exhibit eroder properties. From The-
orem 2 there exists a subclass of attractive PCA (class C) where the noisy conjecture is
verified (p(Ir) < 1 implies ergodicity).

In [9], the authors describe some ergodicity conditions for multi-state PCA. When the
number of states is greater than 2, the ergodicity conditions are rather restrictive in order
to be able to give general results. More general ergodicity conditions are interesting (see
[9], Sect. 3.2) but seems to be very complex when the radius of the PCA grows. In this
paper, we restrict the study to the two state case, which allows to show more easily general
results for PCA of any radius. These sufficient ergodicity conditions can be compared to
the Shlosman-Dobrushin condition applied to PCA (see [10] and [11]). In some examples
(see Sect. 3.1) our sufficient conditions induced by the concept of duality allow to show
ergodicity and decay of correlations where the Dobrushin conditions can not be applied.
Moreover, for some classes of ergodic PCA Theorem 3 gives greater constants for the decay
of spatial correlation.

This paper is organized as follows. In Sect. 2, we present the basic definitions, notations
and some preliminary results. In Sect. 3, we state the main results, Theorems 2 and 3. We
prove Theorem 2 in Sect. 4. We conclude the paper in Sect. 5 with the proof of the decay of
correlation.

2 Definitions, Notations and Preliminary Results

2.1 Probabilistic Cellular Automata

We give a brief description of the theory of PCA.
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Let A be a nonempty finite set and X = AZ
d

be endowed with the product topology.
A probabilistic cellular automata is a discrete time Markov process on the state space X. Let
M(X) be the set of probability measures on X.

Let R be a finite subset of Z
d of cardinality |R| and f a map from A|R|+1 to [0,1]. The

discrete time Markov process η. = {ηt (z) ∈ A : t ∈ N, z ∈ Z
d} whose evolution satisfies

P
[
ηt+1(z) = a|ηt (z + i) = bi, ∀i ∈ R

] = f (a, (bi)i∈R) , (1.1)

for all t ∈ N and z ∈ Z
d is a well defined (discrete time) stochastic process which from

now on will be called d-dimensional PCA. Here, P stands for the probability measure on
AZ

d
induced by the family of local transition probabilities. Also, let E be the expectation

operator with respect to this probability measure. For more details on the definition of PCA
see Toom et al. [14], Maes and Shlosman [10] and Lopez and Sanz [8].

Let μ0 be the initial distribution of the PCA. For any t ≥ 0, we call μt the distribution
of the process at time t . The measure μt is defined on cylinder U = N(�,φ) = {ξ ∈ AZ

d :
ξ(x) = φ(x) ∀x ∈ �} for some fixed φ ∈ AZ

d
and � ⊂ Z

d , |�| < ∞ by

μt(U) =
∑

V ∈Ct

μ0(V )Pη0∈V {ηt ∈ U},

where Ct is the family of all cylinders of X on the coordinates of � (the finite subset of Z
d

used to defined u).
In this paper the notation |�| will represent the cardinality of � when � is a finite subset

of Z
d . If U = N(Ξ,φ) is a cylinder set, the notation |U | will represent the cardinality |Ξ |

of the set Ξ ⊂ Z
d . In the one dimensional case we adopt the following notation: For any

sequence of letters U = (u0, . . . , un) ∈ An+1, the set [U ]s = [u0 . . . un]s := {x ∈ AZ|x(s) =
u0, . . . , x(s + n) = un} will be called cylinder and |U | = n + 1.

2.2 Two-state Probabilistic Cellular Automata

In order to simplify the notation we will focus our attention on two-state PCA, that is to say
PCA η. on {0,1}Z

d
. For any finite set Y , denote by ℘(Y ) the set of all subsets of Y and for

any positive integer r let us define

Ir := {i = (i1, . . . , id ) ∈ Z
d : −r ≤ i1, . . . , id ≤ r}.

Since there is only two states we can rewrite equation (1.1) as the family of transition prob-
abilities {p(J ) : J ∈ ℘(Ir)} such that

p(J ) := P{ηt+1(z) = 1|ηt (z + j) = 1 : j ∈ J }.
Note that any PCA with state space {0,1}Z

d
is completely characterized by a positive integer

number r called the radius of the PCA and the set of transition probabilities {p(J ) : J ∈
℘(Ir)}.
2.3 The Invariant Probability Measure

Definition 1 Let T be a measure-preserving transformation of a probability space (X,F,μ),
where F is the σ -algebra generated by the cylinder sets on X. We say that the probability
measure μ is T -mixing if ∀U,V ∈ F

lim
n→∞μ(U ∩ T −nV ) = μ(U)μ(V ).
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Since the cylinder sets generate the σ -algebra F, it follows that the measure μ is T -
mixing when the last relation is satisfied by any pair of cylinder sets U and V (for more
details see [15]).

2.4 Duality

The concept of duality is a powerful tool in the theory of interacting particle system. It
provides relevant information about the evolution of the process under consideration from
the study of other simpler process, the dual process. The reformulated problems may be
more tractable than the original problems and some progress may be achieved. Now we give
the (classical) definition of duality taken from [7].

Definition 2 Let η. and ζ. be two Markov processes with state spaces X and Y respectively,
and let H (η, ζ ) be a bounded measurable function on X × Y . The processes η. and ζ. are
said to be dual to one another with respect to H if

E
η
[
H (ηt , ζ )

] = E
ζ
[
H (η, ζt )

]

for all η ∈ X and ζ ∈ Y .

Unfortunately, it is not true that every process has a dual. Recently, Lopez et al. [9]
gave a new notion of duality which extends the previous one. More precisely, they gave the
following definition.

Definition 3 Given two discrete time Markov processes, ηt with state space X and ζt with
state space Y and H : X × Y → R and D : Y → [0,∞) bounded measurable functions, the
process η. and ζ. are said dual to one another with respect to (H,D) if

Eη0=x

[
H (η1, y)

] = D(y)Eζ0=y [H (x, ζ1)] . (1.2)

2.5 Duality and Sufficient Ergodicity Conditions

In order to state our results in Sect. 3, we need to give the spirit and some elements of the
proof of the following Theorem, which appears in [9].

Theorem 1 [9] Suppose η. is a Markov process with state space X and ξ. is a Markov
chain with countable state space Y, which are dual to one another with respect to (H,D).
If 0 ≤ D(y) < 1 for all y ∈ Y, then there exists a stochastic process ξ̃. with state space
Ỹ = Y ∪ {S} with S an extra state and a bounded measurable function H̃ : X × Ỹ → R such
that η. and ξ̃. are dual to one another with respect to H̃ . Furthermore, denoting by Θ the
set of all absorbing states of ξ., if

(i) the set of linear combinations of {H(., y) : y ∈ Y} is dense in C (X), the set of contin-
uous maps from X to R;

(ii) D(y) < 1 for any y /∈ Θ , and D := supy∈Y:D(y)<1{D(y)} < 1;
(iii) H(., θ) ≡ c(θ) for all θ ∈ Θ with D(θ) = 1;

then η. is ergodic and its unique invariant measure is determined for any y ∈ Y by

μ̂(y) =
∑

θ∈Θ,d(θ)=1

c(θ)Pξ̃0=y

[
ξ̃τ = θ

]
, (1.3)



Invariant Measures and Decay of Correlations for a Class of Ergodic 107

where τ is the hitting time of Θ̃ = {θ ∈ Θ : D(θ) = 1} ∪ {S} for ξ̃t and μ̂ = limt→∞ μ̂t with

μ̂t (y) =
∫

X
H(x,y)dμt(x).

Sketch of the Proof Suppose that there exists a dual process ξ̃ and a function H̃ that satis-
fies the following (classical) duality equation

Eη0=x

[
H̃ (η1, y)

]
= Eξ̃0=y

[
H̃

(
x, ξ̃1

)]
. (1.4)

For all s ∈ N we write μ̃s(y) := ∫
X H̃ (x, y)dμs(x) and it follows that

μ̃s(y) =
∫

X
Eη0=x[H̃ (ηs, y)]dμ(x)

(1.3)=
∫

X
Eξ0=y[H̃ (x, ξs)]dμ(x)

= Eξ0=y

[∫

X
H̃ (x, ξs)dμ(x)

]
= Eξ̃0=y[μ̃(ξ̃s)].

Recall that τ is the hitting time of the dual process ξ̃. entering an absorbing state θ ∈ Θ̃ and
suppose that P{τ < ∞} = 1. It follows that

lim
s→∞ μ̃s(y) = lim

s→∞
∑

θ∈Θ̃

Eξ̃0=y[μ̃(ξ̃s)|ξ̃t = θ, τ ≤ s]Pξ̃0=y{ξ̃t = θ, τ ≤ s}

+ lim
s→∞ Eξ̃0=y[μ̃(ξ̃s)|τ > s]Pξ̃0=y{τ > s}

=
∑

θ∈Θ̃

μ̃(θ)Pξ̃0=y{ξ̃τ = θ}.

Finally, when the set of linear combinations of the set {H̃ (., y)|y ⊂ Z
d} is dense in C(X)

(the set of continuous functions from X to R) the sequence (μn)n∈N converges in the weak*
topology. Also, the limit measure μ does not depend on the initial measure μ0.

Hence, we have seen that the key point is to prove that P{τ < ∞} = 1. One way to show
this, is to introduce the new type of duality (see (1.2)). If there exists a dual process ξ. with
respect to (H,D) (see (1.2)), with state space Y and absorbing states space Θ that verifies
the new concept of duality then we can define a standard dual process ξ̃. with state space
Ỹ = Y∪{S} and such that the set of all absorbing states is Θ̃ = Θ ∪{S}. When the supremum
on Y of the function D is less than one, we get that P{τ < ∞} = 1 (see Lemma 1). Here S

is an extra absorbing state and the transition probabilities of ξ̃. satisfy

Pξ̃0=ỹ0
{ξ̃1 = ỹ1} =

⎧
⎨

⎩

D(ỹ0)Pξ0=ỹ0{ξ1 = ỹ1}, if ỹ0, ỹ1 ∈ Y
1 − D(ỹ0), if ỹ0 ∈ Y, ỹ1 = S

1, if ỹ0 = ỹ1 = S.

Taking H̃ (x, y) = H(x,y) when y ∈ Y and H̃ (x,S) = 0 we get that μ̃(y) = μ̂(y) for all
y ∈ Y and it is possible to show that the dual process ξ̃. satisfies the standard duality equa-
tion (1.4). Note that since D = supy∈Y:D(y)<1{D(y)} < 1, at each iteration the probability to
enter the extra absorbing state S is positive and this implies the following result:

Lemma 1 Under the conditions of Theorem 1, for all integer i ≥ 1 one has

P(τ > i) ≤ Di .
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Proof By the Markov property we have that

Pξ̃0=ỹ0
{τ > i} ≤ D × Pξ̃0=ỹ0

{τ > i − 1}.
Then, the result follows by using the mathematical induction principle. �

Note that Lemma 1 implies that P{τ < ∞} = 1 which finishes the proof of Theorem 1.
Before stating the main results of this paper, we introduce one more piece of notation: let

∞1∞ denote the all one configuration, i.e. ∞1∞ = (1Zd (x))x∈Zd . Analogously, ∞0∞ denote
the all zero configuration.

3 Main Results and Examples

A PCA of radius r is called attractive if for any J ⊂ Ir and j ∈ Ir we have p(J ∪ {j}) ≥
p(J ). We consider here the following subclass of attractive PCA.

Definition 4 We say that a two-state PCA of radius r belongs to C if its transition
probabilities satisfy p(J ) = ∑

J ′⊆J λ(J ′) for any J ∈ ℘(Ir) where λ is some map from
℘(Ir) → [0,1).

The following Proposition gives sufficient conditions for an attractive PCA to belong
to C.

Proposition 1 A two-state probabilistic cellular automaton η. belongs to C if its transition
probabilities satisfy the following set of inequalities:

(a) For any i ∈ Ir ,

p({i}) ≥ p(∅).

(b) For any 1 ≤ k ≤ |Ir | − 1 and for any j0, . . . , jk ∈ Ir

p({j0, . . . , jk}) ≥ (−1)kp(∅) −
k−1∑

n=0

(−1)k+1−n
∑

{l0,...,ln}⊂{j0,...,jk}
p({l0, . . . ln}).

Theorem 2 Let η. be a two-state d-dimensional probabilistic cellular automaton of radius
r that belongs to C. If p(Ir) < 1 then η. is an ergodic PCA and there exists a dual process ξ

which satisfy (1.2). Moreover, for any cylinder set U we can find (αk ∈ Z)k∈K and (Y (k) ⊂
Z

d)k∈K with |K| < ∞ such that

μ(U) =
∑

k∈K

αk

( ∞∑

l=1

Pξ0=Y(k){ξl = ∅|ξl−1 �= ∅}
)

.

Remark 1 In some cases it is possible to exchange the role of the two states (0 ↔ 1) in order
to show ergodicity using the previous results.

When p(Ir) = 1 the PCA may fail to be ergodic. For instance if λ(∅) = 0 which means
that the probability that a finite configuration of 0 gives 0 with probability one, there is at
least two invariant measures: δ∞0∞ and δ∞1∞ .
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Corollary 1 Under the conditions of Theorem 2 (p(Ir) < 1), if λ(∅) = 0 then δ∞0∞ is the
unique invariant measure.

Theorem 3 Let η. be a one-dimensional probabilistic cellular automaton ∈ C of radius
r with p(Ir) =: D ∈ [0,1). Then, the unique invariant measure μ is shift-mixing. Also, if
D �= 0, for any pair of cylinders [U ]0 = [u0 . . . uk]0, [V ]0 = [v0 . . . vk′ ]0 and t ≥ |U | + |V |
we have

|μ([U ]0 ∩ σ−t [V ]0) − μ([U ]0) × μ([V ]0)| ≤ exp (−a × t) × K(U,V ),

where σ is the shift on {0,1}Z, a = 1/2r × ln (1/D) and K(U,V ) is a constant depending
only on U , V , D and r .

Remark 2 This last result can be extended to d-dimensional PCA.

3.1 Examples and Comparison with Known Results

3.1.1 The Domany-Kinzel Model

This is a one-dimensional PCA η. of radius r = 1 introduced in [1] with transition probabil-
ities

P{ηt+1(z) = 1|ηt (z − 1, z, z + 1) = 000 or 010} = p(∅) = p({0}) = a0,

P{ηt+1(z) = 1|ηt (z − 1, z, z + 1) = 100 or 110} = p({−1})
= p({−1,0}) = a1,

P{ηt+1(z) = 1|ηt (z − 1, z, z + 1) = 001 or 011} = p({1}) = p({0,1}) = a1

and

P{ηt+1(z) = 1|ηt (z − 1, z, z + 1) = 101 or 111} = p({−1,1})
= p({−1,0,1}) = a2,

where, for any subset V ⊂ Z, η(V ) ∈ {0,1}V denote the restriction of a configuration η ∈
{0,1}Z to the set of positions in V .
Using Proposition 1 we obtain that η. ∈ C when p({−1,1}) ≥ p({−1}) + p({1}) − p(∅),
which is equivalent to the condition a2 ≥ 2a1 − a0. From Theorem 2 the PCA η. is ergodic
if p(Ir) = p({−1,0,1}) = a2 < 1. From Theorem 3 the unique invariant measure is shift-
mixing with exponential decay of spatial correlation such that for any pair of cylinders [U ]0

and [V ]0 and for all t ≥ |U | + |V | we obtain

|μ([U ]0 ∩ σ−t [V ]0) − μ([U ]0) × μ([V ]0)| ≤ K exp (−(1/2 ln (1/a2))t),

where K can be explicitly computed (see the end of Proof of Theorem 3). Using Theorem 2
we can compute, for instance, the measure of the cylinder [01]0 which is

μ([01]0) = μ([1]1) − μ([11]0) = μ̂({1}) − μ̂({0,1})

=
∞∑

t=1

Pξ0={1}{ξt = ∅|ξt−1 �= ∅}
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+
∞∑

t=1

Pξ0={0,1}{ξt = ∅|ξt−1 �= ∅},

where ξ. is the associated dual process.

3.1.2 Two-dimensional Example

Let η be a two-state, two-dimensional PCA of radius one. In this case I1 = {(l, k)| − 1 ≤
l, k ≤ 1} is a square of 9 sites. The transition probabilities {p(J )|J ⊆ I1} of η. are defined
by p(J ) = α

∑|J |
k=0 C9

k = α × 2|J | where Cl
k are the binomial coefficients. This PCA belongs

to C since for any J ⊆ I1 we can write λ(J ) = α and obtain that P (J ) = ∑
J ′⊆J λ(J ′). This

PCA is a kind of generalization to dimension 2 of the Domany-Kinzel model (each site has
the same weight) with only one parameter. The sufficient ergodicity condition is p(Ir) < 1
which implies that α × 29 < 1 (α < 2−9) and the constant of decay of spatial correlation is
a = 1

2 ln(1/(29 × α)).

3.1.3 Comparison with Dobrushin Condition

In [2], Dobrushin gives sufficient ergodicity conditions for interacting particle systems. Us-
ing our notation, these conditions applied to PCA can be translated as γ < 1 (see [10] and
[11]), where

γ =
∑

j∈Ir

sup
J⊆Ir

|p(J ∪ {j}) − p(J )|.

In the case of the Domany-Kinsel model, which belongs to the class C, we obtain γ =
supJ⊆Ir

|p(J ∪{−1})−p(J )|+ supJ⊆Ir
|p(J ∪{1})−p(J )| = 2(a2 −a1) since η. ∈ C (a2 ≥

2a1 − a0). If a2 < 1 (condition of Theorem 2) and 2(a2 − a1) ≥ 1 the Dobrushin sufficient
conditions can not be applied.

For the two-dimensional example we have γ = α(
∑9

k=1 k × C9
k ). In this case γ > p(Ir)

and even if γ < 1 the constant of decay of correlation 1
2 ln(1/(p(Ir )) is greater than

1
2 ln(1/(γ )), the constant of decay of correlation given in [10].

More generally, if a PCA belongs to C the sufficient condition p(Ir) < 1 can be rewritten
as p(Ir) = ∑

J⊆Ir
λ(J ) < 1 and the Dobrushin sufficient condition can be rewritten as γ =∑

J �=∅, J⊆Ir
λ(J ) × |J | < 1.

4 Proof of Theorem 2 and Proposition 1

4.1 PCA’s in C and Their Dual Process

In [9], the authors give sufficient ergodicity conditions for one-dimensional multi-state PCA
of radius one using a dual process satisfying (1.2). Here we will use an analogous dual
process to give sufficient ergodicity conditions for two-state, d-dimensional PCA of radius
r using the following duality equation:

Eη0=x[H(η1, Y )] = D(Y )Eξ0=Y H [(x, ξ1)], (1.5)
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where η. is a PCA with state space {0,1}Z
d
. The state space of the dual process ξ. is the class

of all finite subsets of Z
d . As in [9] we define the function H by

H(x,Y ) =
{

1, if x(z) = 1,∀z ∈ Y

0, otherwise.

The rule for the evolution of the process ξt is given by

ξt+1 =
⋃

z∈ξt

B(z)

where for any nonempty set J ⊆ Ir we have

P

[
B(z) = {z + j |j ∈ J }

]
= π(J )

and

P
[
B(z) = ∅] = π(∅).

Then, take the function D such that D(Y ) = D|Y | for any finite subset Y ⊂ Z
d , where

D ∈ [0,1]. Note that D(∅) = 1 and ∅ is the unique absorbing state for this dual process.

4.2 The Functions H and μ̂

Note that, for this particular choice of H , we have

μ̂(Zd) =
∫

X

H(x,Z
d)dμ(x) = μ(∞1∞) = 0

and

μ̂(∅) =
∫

X

H(x,∅)dμ(x) = μ({0,1}Z
d

) = 1,

where X = {0,1}Z
d

and ∞1∞ is the all one configuration (1Zd (x))x∈Zd . The following
Lemma is used in the proof of Theorems 2 and 3.

Lemma 2 The set of linear combinations of {H(., y)|y ∈ Z
d} is dense in C({0,1}Z

d
,R),

the set of continuous function from {0,1}Z
d

to R. For any cylinder U = N(�,ϕ) ⊂ {0,1}Z
d

(with � ⊂ Z
d , |�| < ∞ and ϕ ∈ AZ

d
) we have

μ(U) =
∑

Y(i)

αiμ̂(Y (i)),

where αi ∈ Z, Y (i) ⊂ Z
d and max{|Y (i)|} < ∞.

Proof For the sake of simplicity, we only give the proof for the two-state, one-dimensional
case. The key point of the proof consists in showing that any cylinder [U ]t := [u0 . . . un]t ,
(ui ∈ {0,1} and t, n ∈ N) can be decomposed into a non-commutative sequence of subtrac-
tions and unions of intersections of cylinders of the type [1]t , t ∈ Z. We denote by T ([U ]t )
this decomposition. One way to accomplish this decomposition is to follow the following
rules:

T ([1]t ) = [1]t , T ([0]t ) = {0,1}Z
d − [1]t .
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Then, for all t, n ∈ Z and U = u0 . . . un we have

T ([U1]t ) = T ([U ]t ) ∩ [1]t+n+2.

Thus,

T ([U0]t ) = T ([U ]t ) − T ([U ]t ) ∩ [1]t+2+n.

For instance,

T ([100]0) = T ([10]0) − T ([101]0)

= (T ([1]0) − T ([11]0)) − (T ([10]0) ∩ [1]2)

= [1]0 − [11]0 − (([1]0 − [11]0) ∩ [1]2)

= ([1]0 − [11]0 − ([1]0 ∩ [1]2)) ∪ [111]0.

Then, note that 1[1000]0 , the characteristic function of the cylinder [1000]0, can be written as

1[1000]0(x) = 1[1]0(x) + 1[111]0(x) − 1[1]0∩[1]2(x) − 1[11]]0(x)

= H(x, {0}) + H(x, {0,1,2}) − H(x, {0,2}) − H(x, {0,1}).
Since for any finite subset Y ⊂ Z we have 1∩i∈Y [1]i (x) = H(x,Y ), it follows that for all
n ∈ N, t ∈ Z and U ∈ {0,1}n we get 1[U ]t = ∑

αiH(x,Y (i)). This, in turn, implies that the
set of linear combinations of the set {H(.,Y )|Y ∈ Z

d} is dense in C({0,1}Z
d
). We finish the

proof by observing that for any cylinder [U ]t , we have

μ([U ]t ) =
∫

1[U ]t (x)dμ(x)

=
∫ ∑

αiH(x,Y (i))dμ(x)

=
∑

αiμ̂(Y (i)). �

Remark 3 Using the definition of H taken in [9] which takes into consideration the multi-
state case, it is possible to prove Proposition 2 for more general d-dimensional PCA.

4.3 Proof of Theorem 2

We first establish a sequence of equalities between the transition probabilities of the PCA
(P (J )|J ∈ Ir) and the transition probabilities of the dual process ((π(J )|J ∈ Ir )).

We can rewrite the right hand of (1.4) to obtain

Eη0=x[H(η1, Y )] = Pη0=x{η1(z) = 1 ∀z ∈ Y }.
Hence, using the independence property of η. we get that

Pη0=x{η1(z) = 1 ∀z ∈ Y } =
∏

z∈Y

Pη0=x{η1(z) = 1}.

For the left hand of (1.5) we have

Eξ0=Y [H(x, ξ1)] = Pξ0=Y {x(z) = 1 ,∀z ∈ ξ1}.
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For any x ∈ {0,1}Z
d

we denote by Cx the set {z ∈ Z
d |x(z) = 1}. Then

Pξ0=Y {x(z) = 1 ∀z ∈ ξ1} = Pξ0=Y {ξ1 ⊂ Cx}.
Using the independence property of the dual process we can assert that

Pξ0=Y {ξ1 ⊂ Cx} =
∏

z∈Y

P{B(z) ⊂ Cx}.

Finally we can rewrite (1.5) as
∏

z∈Y

Pη0=x{η1(z) = 1} = D|Y | ∏

z∈Y

P{B(z) ⊂ Cx}

=
∏

z∈Y

D × P{B(z) ⊂ Cx} (1.6)

which implies that
∏

z∈Y

p(Jz) =
∏

z∈Y

D × �z, (1.7)

where Jz = {i − z|i ∈ {Cx ∩ {j + z}|j ∈ Ir}} and �z is given by

�z = π(∅) +
∑

i∈Ir

11(x(z + i)) × π({i})

+
∑

i,j∈Ir

1{1}(x(z + i)) × 1{1}((x(z + j)) × π({i, j})

+ · · · +
∑

i1,...,ik∈Ir

(
k∏

l=1

1{1}(x(z + ik))

)

× π({i1, . . . , ik})

+ · · · +
(

∏

i∈Ir

1{1}(x(z + i))

)

× π(Ir).

By simplicity of notation we write π(i1, . . . ik) and p(i1, . . . ik) instead of π({i1, . . . ik})
and p({i1, . . . ik}).

Since (1.7) is true for all x ∈ {0,1}Z
d

we obtain the following equations for π(.),

p(∅) = Dπ(∅)

p(i) = D[π(∅) + π(i)]
p(i, j) = D[π(∅) + π(i) + π(j) + π(i, j)]

p(i, j, k) = D[π(∅) + π(i) + π(j) + π(i, j) + π(i, k) + π(j, k) + π(i, j, k)]
where i, j, k ∈ Ir .

More generally, for any 0 ≤ k ≤ |Ir | − 1,

p(i0, ..., ik) = D
[
π(∅) +

k∑

l=0

π(l) + · · · +
k−1∑

i=0

∑

l0,...,li∈{i0,...,ik}
π(l0, ..., li ) + π(l0, l1, ..., lk)

]
.

(1.8)
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Since

π(∅) +
|Ir |∑

k=0

⎛

⎝
∑

l0,l1,...lk∈Ir

π(l0, l1, . . . lk)

⎞

⎠ + π(Ir) = 1,

we get that D = p(Ir).
By definition, the dual process is completely determined by the parameters 0 ≤ π(J ) ≤ 1

(J ⊆ Ir ). From the set of equations (1.8) the dual process associated with the particu-
lar functions H and D is well defined if the transition probabilities of the PCA satisfy
p(J ) = D

∑
J⊆Ir

π(J ) with J ∈ ℘(Ir). In this case we get that λ(J ) = Dπ(J ) and we claim
that a PCA η. admits a dual process that satisfies the duality equation (1.2) with particular
functions H and D given in Sect. 4.1 if and only if this PCA belongs to the class C.

To show that the PCA is ergodic we need to verify the three conditions of Theorem 1.
Condition (i) is verified since from Lemma 2, the set of linear combinations of functions
belonging to {H(.,Y )|Y ∈ Z

d} is dense in C({0,1}Z
d
,R).

Condition (ii) is satisfied since supY �=∅{D(Y )} = D = p(Ir) < 1.
Condition (iii) follows from the fact that H(.,∅) = 1 and D(∅) = D|∅| = 1.

Since ∅ is the only absorbing state for ξ., using Theorem 1 (1.2) we get that for any
nonempty set Y ⊂ Z

d

μ̂(Y ) = μ̂(∅)Pξ0=y{ξτ = ∅} =
+∞∑

t=1

Pξ0=y{ξt = ∅|ξt−1 �= ∅}.

From Lemma 2, for any cylinder set U there exist αk ∈ R and Y (k) finite subset of Z
d such

that μ(U) = ∑
αkμ̂(Y (k)), which implies the last statement of Theorem 2.

4.3.1 Proof of Corollary 1

When λ(∅) = 0, Theorem 2 and Lemma 2 together with the fact that π(∅) = 0 imply that
for any cylinder U that does not contain the point ∞0∞ we have

μ(U) =
∑

αi

( ∞∑

k=0

PY0=Y(i){Yk = ∅|Yk−1 �= ∅}
)

= 0.

Indeed, from the proof of Theorem 2 we get that π(∅) = 0 when p(Ir) = 0. Also, in the
case p(Ir) > 0 we have that π(∅) = 0 since π(∅) = λ(∅)

p(Ir )
. Finally note that μ(∞0∞) =

1 − μ({0,1}Z
d −∞ 0∞) = 1 which finishes the proof.

4.4 Proof of Proposition 1

Since the {π(J )|J ⊆ Ir} represent the transition probabilities of the dual process for all
J ∈ Ir one has π(J ) ≥ 0 and Proposition 1 is a simple consequence of the following Lemma.

Lemma 3 The transition probabilities π(.) of the dual process satisfy

π(∅) = p(∅)

D

π(i) = p(i) − p(∅)

D
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π(i, j) = 1

D
[p(i, j) + p(∅) − p(i) − p(j)]

π(i, j, k) = 1

D
[p(i, j, k) − p(∅) + p(i) + p(j) + p(k) − p(i, j) − p(i, k) − p(j, k)]

π(i, j, k, l) = 1

D

[
p(i, j, k, l) + p(∅) −

∑

l0∈{i,j,k,l}
p(l0) +

∑

{l0,l1}⊂{i,j,k,l}
p(l0, l1)

−
∑

{l0,l1,l2}⊂{i,j,k,l}
p(l0, l1, l2)

]
.

More generally, for any 0 ≤ k ≤ |Ir | − 1 and for any j0, . . . , jk ∈ Ir

π(j0, . . . , jk) = 1

D

⎡

⎣(−1)k+1p(∅) +
k∑

j=0

(−1)k−j
∑

{l0,...,lj }⊂{j0,...,jk}
p(l0, . . . , lj )

⎤

⎦ .

Proof of Lemma 3 From the proof of Theorem 2 a PCA belongs to class C if and only if the
transitions probabilities p(.) and π(.) satisfy the set of equations (1.8). We use mathematical
induction to solve the set of equations (1.8). For the two first iterations it is easily seen that
π(∅) = p(∅)

D , π(i) = p(i)−p(0)

D and π(i, j) = 1
D [p(i, j) + p(0) − p(i) − p(j)]. Then suppose

that the order k is true:

π(j0, . . . , jk) = 1

D

⎡

⎣(−1)k+1p(∅) +
k∑

j=0

(−1)k−j
∑

(l0,...,lj )∈{j0,...,jk}
p(l0, . . . , lj )

⎤

⎦ .

Using (1.8) we obtain that π(j0, . . . , jk+1) equals

1

D

⎡

⎣p(j0, . . . , jk+1) − dπ(∅) − D
k∑

j=0

⎛

⎝
∑

(l0,...,lj )∈{j0,...,jk+1}
π(l0, . . . , lj )

⎞

⎠

⎤

⎦ . (1.9)

Then we suppose the rank k true and use (1.9) to obtain that the term in p(∅) in
π(j0, . . . , jk+1) is

−p(∅) −
k∑

i=0

⎛

⎝
∑

l0,...,li∈{j0,...,jk+1}
(−1)i+1p(∅)

⎞

⎠

= p(∅)

(

−1 −
k∑

i=0

Ck+2
i+1 (−1)i+1

)

= p(∅)
(

− 1 + Ck+2
0 (−1)0 + Ck+2

k+2 (−1)k+2 − (1 − 1)k+2
)

= (−1)k+2p(∅),
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where the constants Ck
i represent the binomial coefficients. Next we obtain that the term in∑

l0∈{j0,...,jk+1} p(l0) in π(j0, . . . , jk+1) is equal to

−
k∑

i=0

∑

(l0,...,li )∈{j0,...,jk+1}

⎛

⎝
∑

h0∈{l0,...,li }
p(h0)

⎞

⎠ (−1)i

= −
∑

l0∈{j0,...,jk+1}
p(l0)

(
k∑

i=0

Ck+1
i (−1)i

)

= −
∑

l0∈{j0,...,jk+1}
p(l0)

(
(1 − 1)k+1 − Ck+1

k+1 (−1)k+1
)

=
∑

l0∈{j0,...,jk+1}
p(l0)(−1)k+1.

Note that Ck+1
i represents the number of ways to choose l1, . . . , li in j1, . . . , jk+1 when we

have chosen l0 and j0. More generally, for 0 ≤ M ≤ k, the term in
∑

(l0,...,lM )∈{j0,...,jk+1}
p(l0, . . . , lM) in π(j0, . . . , jk+1) is equal to

−
k∑

i=M

∑

(l0,...,li )∈{j0,...,jk+1}

⎛

⎝
∑

(h0,...,hM )∈{l0,...,lj }
p(h0, . . . , hM)

⎞

⎠ (−1)i−M

= −
∑

(l0,...,lM )∈{j0,...,jk+1}
p(l0, . . . , lM)

(
k−M∑

i=0

Ck+1−M
i (−1)i

)

= −
∑

(l0,...,lM )∈{j0,...,jk+1}
p(l0, . . . , lM)

(
(1 − 1)k+1−M − (−1)k+1−M

)

=
∑

(l0,...,lM )∈{j0,...,jk+1}
p(l0, . . . , lM)(−1)k+1−M,

which finishes the proof. �

5 Decay of Correlation

For the sake of simplicity we study the decay of correlation for PCA with state space {0,1}Z.
An extension of this result to the multi-dimensional case is straightforward but requires too
much notation.

5.1 Proof of Theorem 3

The proof of Theorem 3 requires the following two results. The second one is new and is a
key point for the proof of Theorem 3. The first one seems to be well known. However, its
proof can not be found or at least it is quite hard to be found so we provide a proof of that
result.

Recall that μ stands for the unique invariant measure of an ergodic PCA.



Invariant Measures and Decay of Correlations for a Class of Ergodic 117

Proposition 2 Every invariant measure of an ergodic PCA is shift-invariant.

Lemma 4 Let [U ]0 and [V ]0 be two cylinders. If μ([U ]0) = ∑
αiμ̂(Ai),μ([V ]0) =∑

βiμ̂(Bi) and t ≥ |U | + |V |, then

μ([U ]0 ∩ σ−t [V ]0) = μ([U ]0 ∩ [V ]t ) =
∑

αiμ̂(Ai)(∗, t)
∑

βiμ̂(Bi),

where
∑

αiμ̂(Ai)(∗, t)
∑

βiμ̂(Bi) :=
∑

i,j

αiβj μ̂(Ai ∪ {Bi + t}).

Proof of Theorem 3 If D = 0, then p(∅) = 0. From Corollary 1, μ = δ0 and μ has exponen-
tial decay of correlation. For the remainder of this proof we therefore take 0 < D = p(Ir) <

1.
For any finite subset E of Z and s ∈ Z, define E + s := {x + s : x ∈ E}. We claim that

for any finite subsets E and F , if t ≥ 2Nr + |E| + |F | we have

∣∣μ̂(E ∪ {F + t}) − μ̂(E) × μ̂(F )
∣∣ ≤ DN+1 1

1 − D
.

The proof of this claim uses Theorems 1 and 2 which together say that for any finite subset
E ⊂ Z, μ̂(E) = Pη0=E{ητ = ∅}. This, in turn, implies that

μ̂(E) =
∞∑

k=0

Pη0=E{τ = k},

where τ is the hitting time for the process η.. In fact, by Lemma 1, for any integer N > 0
we have

∣∣
∣∣
∣
μ̂(E) −

N∑

k=0

Pη0=E{τ = k}
∣∣
∣∣
∣
≤ DN+1 1

1 − D
.

Note that if s ≥ 2ri + |E| + |F |, where i is any positive integer, then

Pη0=E∪{F+s}{τ = i} = Pη0=E{τ = i} ×
i∑

j=0

Pη0={F+s}{τ = j}

+ Pη0={F+s}{τ = i} ×
i∑

j=0

Pη0=E∪{F+s}{τ = j}.

It follows that if s ≥ |E| + |F | + 2N × r , then

N∑

i=0

PE0=E∪{F+s}{τ = i} =
N∑

i=0

PE0=E{τ = i} ×
N∑

i=0

PE0={F+s}{τ = i}.

This easily implies

∣
∣μ̂(E ∪ {F + s}) − μ̂(E) × μ̂(F )

∣
∣ ≤ DN+1 1

1 − D
, (1.10)

for s ≥ |E| + |F | + 2N × r , which proves our claim.
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By Lemma 2, for any pair of cylinders [U ]0 and [V ]0, there exist finite sequences of sets
(Ai) and (Bi) and finite sequences of real numbers αi and βi such that

μ([U ]0) =
∑

αiμ̂(Ai)

and

μ([V ]0) =
∑

βiμ̂(Bi).

Thus, by inequality (1.10),

∣
∣∣αiβj μ̂(Ai ∪ {Bi + s} − αiμ̂(Ai) × βj μ̂(Bj ))

∣
∣∣ ≤ |αiβj |DN+1 1

1 − D

for any pair of subsets Ai and Bj of Z and for any s ≥ |U | + |V | + 2Nr .
It follows from this that

∣∣
∣
∑

i,j

αiβj μ̂
(
Ai ∪ {Bi + s}) −

∑

i

αiμ̂(Ai) ×
∑

j

βj μ̂(Bj )

∣∣
∣ ≤ F(U,V )DN,

where F(U,V ) = ∑
i,j |αiβj | D

1−D .

Using Lemma 4, if t ≥ |U | + |V | we obtain

∣∣
∣μ

([U ]0 ∩ σ−t [V ]0
) − μ([U ]0) × μ([V ]0)

∣∣
∣ ≤ K(U,V ) exp

(
− t × ln (1/D)

2r

)
,

where K(U,V ) = F(U,V )D−(
|U |+|V |

2r
).

Finally, it follows from Proposition 2 that the invariant measure is shift-invariant and that
the exponential decay of correlations of cylinders implies the mixing property. �

5.1.1 Proof of Proposition 2

It is sufficient to show that for any cylinder [U ]t , where U ∈ {0,1}l for some l ∈ N , we have

μ(σ−1[U ]t ) = μ([U ]t ).
Since μ is the invariant measure of an ergodic PCA η., there exits a sequence (μi)i∈N which
converges in the weak* topology to μ, where μi is the distribution of a PCA η. at time i

starting from an initial distribution μ0. It follows that for any cylinder [U ]t we have

lim
n→∞μn([U ]t ) = μ([U ]t ).

Since for any positive integer i we have

μi([U ]t ) =
∑

Vj ∈{0,1}n+1+2ir

μ0([Vj ]t−ir )Pη0∈[Vj ]t−ir
{ηi ∈ [U ]t },

we can choose μ0 as a shift-invariant probability measure. Hence, for any positive integer i

and any cylinder [U ]t we have

μi([U ]t ) = μi(σ
−1[U ]t ),

which finishes the proof.
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5.1.2 Proof of Lemma 4

We prove the lemma using the principle of mathematical induction. First we prove it for the
case |U | = 1 and |V | = 1. Note that for any finite set {j0, . . . , jk}, with j0, . . . , jk ∈ Z,

μ̂({j0, . . . , jk}) =
∫

{0,1}Z
H({j0, . . . , jk}, x)dμ(x)

= μ({∩[1]j |j ∈ {j0, . . . , jk}})
and observe that for any k ≥ 1 ∈ N we have

μ([1]0 ∩ [1]k) = μ̂({0} ∪ {k}).
Since μ([0]k) = 1−μ̂({k}) = μ̂(∅)−μ̂({k}) and μ([1]0 ∩[0]k) = μ([1]0)−μ([1]0 ∩[1]k) =
μ̂({0}) − μ̂({0, k}) we get, again, that

μ([1]0 ∩ [0]k) = μ̂({0} ∪ ∅) − μ̂({0} ∪ {k}).
Furthermore, we have μ([0]0 ∩ [1]k) = μ̂({1}) − μ̂({0, k}).

Finally, note that

μ([0]0 ∩ [0]k) = 1 − μ([1]0 ∩ [1]k) − μ([1]0 ∩ [0]k) − μ([0]0 ∩ [1]k)
= μ̂(∅) − μ̂({0} ∪ {k}) − μ̂({0}) + μ̂({0} ∪ {k}) − μ̂({k})

+ μ̂({0} ∪ {k})
= μ̂(∅) + μ̂({0} ∪ {k}) − μ̂({0}) − μ̂({k})
= [

μ̂(∅) − μ̂({0})] (∗, t)
[
μ̂(∅) − μ̂({k})] ,

which finishes the proof in the case |U | = |V | = 1.
Now, suppose that μ([U ]0 ∩ σ−t [V ]0) = ∑

i,j αiβj μ̂(Ai ∪ {Bi + t}) is true for |U | =
|V | = n. Consider t ≥ 2n + 1 and let [U ]0, [V ]0 be two cylinders such that μ([U ]0) =∑

αiμ̂(Ai) and μ([V ]0) = ∑
βj μ̂(Bj ). Since μ([U1]0) = ∑

αiμ̂(Ai ∪ {|U |}), we get

μ([U1]0[V 1]t ) =
∑

i,j

αiβj μ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t}).

Noting that μ([V 1]t ) = ∑
αiμ̂({Bi + t} ∪ {|V | + t}) we get the desired result for the case

[U1]0 ∩ [V 1]t .
The result for the case [U1]0 ∩ [V 0]t follows by noting that

μ([U1]0 ∩ [V 0]t ) = μ([U1]0 ∩ [V ]t ) − μ([U1]0 ∩ [V 1]t )
=

∑

i,j

αiβj μ̂(Ai ∪ {|U |} ∪ {Bj + t})

−
∑

i,j

αiβj μ̂(Ai ∪ {Bj + t} ∪ {|U |, |V | + t})

=
∑

αiμ̂(Ai ∪ {|U |})(∗, t)
∑

αiμ̂({Bi + t})

−
∑

αiμ̂({Bi + t} ∪ {|V | + t}).
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It can also be shown that

μ([U0]0 ∩ [V 1]t ) =
[∑

αiμ̂(Ai) −
∑

αiμ̂(Ai ∪ {|U |})
]

× (∗, t)

[∑
αiμ̂({Bi + t} ∪ {|V | + t})

]
.

Finally, using that

μ([U0]0 ∩ [V 0]t ) = μ([U ]0 ∩ [V ]t ) − μ([U1]0 ∩ [V 0]t )
− μ([U0]0 ∩ [V 1]t ) − μ([U1]0 ∩ [V 1]t )

we can show that

μ([U0]0 ∩ [V 0]t ) =
[∑

i,j

αiβj μ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj μ̂(Ai ∪ {Bi + t} ∪ {|U |})
]
(∗, t)

×
[∑

i,j

αiβj μ̂(Ai ∪ {Bi + t})

−
∑

i,j

αiβj μ̂(Ai ∪ {Bi + t}) ∪ {|V | + t}
]

which finishes the proof.

Final Questions

(i) Is there exist an ergodic PCA such that the unique invariant measure is not shift-mixing?
(ii) Is there exist an ergodic PCA such that the invariant measure has non-exponential decay

of correlation?
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